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Abstract 

One of the main concerns for aging steel bridges in the United States is the initiation and 

propagation of distortion-induced fatigue cracks. Distortion-induced fatigue cracks account for 

most of the fatigue cracks in bridges. Despite recent studies proving that visual inspections 

consistently fail to identify realistically sized fatigue cracks, Departments of Transportation are 

forced to rely primarily on the use of visual inspections to locate and characterize fatigue cracking. 

Many detection methodologies have been examined for fatigue crack detection, but the methods 

are dependent on detection equipment that is physically attached to the bridge, such as sensor 

networks, which limits the flexibility of the methods for analyzing the multiple fatigue susceptible 

regions present on highway bridges. The development of an inspection technique that is not 

dependent on human visual inspection or physical attachments would have the potential to 

decrease the time and cost of performing inspections, as well as decrease the risk of injury to 

inspectors and increase reliability.  

The ability of vision-based technologies to serve as an alternative to manual inspections of 

highway bridges is an area of active research. While many vision-based technologies have been 

proven to detect macro-indicators of damage, digital image correlation (DIC) has shown potential 

for detecting and characterizing fatigue cracks. Since DIC measurements have the ability to 

capture full-field displacements and surface strains, it is proven that developed DIC methodologies 

have the ability to identify and characterize both in-plane and out-of-plane fatigue cracks, allowing 

application to steel bridges exposed to differential girder displacement. This report summarizes 

the development of a methodology for crack detection using DIC and focuses on the impact of 

crack complexity on the developed methodology. Research indicates that DIC is successful at 

detecting complex branched distortion-induced fatigue cracks, but automation presents challenges.  
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Chapter 1 Digital Image Correlation Background 

1.1 Introduction 

Bridges are vital to the movement of goods and people across the country but are prone to 

damage and deterioration from repetitive loads over their long service life. In their most recent 

Infrastructure Report Card, the American Society of Civil Engineers gave bridges in the United 

States a grade of C and found that over 7.5 percent of bridges are considered structurally deficient 

(ASCE 2021). Identifying and repairing potential issues is vital to properly maintaining bridges 

and ensuring that they remain in-service for at least the entirety of their intended service life.  

One of the major issues impacting older steel bridges is the initiation and propagation of 

fatigue cracks (Fisher 1984), specifically distortion-induced fatigue cracks, which accounts for 

almost 90% of fatigue cracks in aging steel bridges in the United States (Connor and Fisher 2006). 

Steel bridges built prior to the 1980s in the United States were regularly designed without a 

connection between the flanges and connection plate, which can increase the rate of initiation for 

distortion-induced fatigue cracks (Zhao and Roddis 2004). When a bridge with this detail 

experiences traffic loads, the girders are subjected to differential deflection between them. The 

differential deflection can allow the cross-frame to push or pull on the girder web which causes 

out-of-plane stresses to be applied to the weak web gap region, resulting in distortion-induced 

fatigue cracks. 

To minimize the potential impact of distortion-induced fatigue cracking, bridges are 

required to be repaired or retrofitted based on the findings of regular inspections. Bridge 

inspections are typically performed on a 24-month cycle (FHWA 2004), and the most common 

method for fatigue crack detection is through visual inspection. Fatigue cracks are caused by cyclic 

traffic loads, and they are initially very small and challenging to detect through visual inspection. 
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When cracks go undetected, however, they have the potential to propagate to a critical size, which 

could compromise a bridge’s structural integrity. Although bridge inspections are necessary to 

ensure the safety of bridge infrastructure, visual inspections have significant monetary and time 

costs, as well as presenting safety risks to both inspectors and the travelling public. Additionally, 

the identification of realistic fatigue cracks has been proven to be extremely difficult and 

inconsistent (Campbell et al. 2020; Whitehead 2015; Zhao and Haldar 1996). 

Technologies to detect and monitor cracking has been evaluated by researchers interested 

in structural health monitoring (SHM) and non-destructive testing (NDT). While sensing 

technologies have been used successfully to detect and monitor both in- and out-of-plane cracks, 

many of these approaches require the use of sensors or other components that physically attach to 

a particular location on a bridge, preventing these methodologies from effectively monitoring the 

various regions of fatigue susceptibility on steel bridges. The development of a computer vision-

based detection methodology that would operate without dependence on a physical attachment 

would allow large sections of steel bridges to be surveyed safely and efficiently.  

Some research has been performed on vision-based crack detection methodologies, but the 

majority of testing conducted was under highly idealized conditions that only evaluated in-plane 

fatigue loading or non-metallic materials (Vanlanduit et al. 2009; Rupil et al. 2011; Nowell et al. 

2010). Very few research programs have evaluated vision-based crack detection methods on out-

of-plane fatigue loading or with the complex geometries commonly found on steel highway 

bridges. A vision-based crack detection methodology that utilizes digital image correlation (DIC) 

is being evaluated for performance on both ideal and non-ideal in-plane lab setups and out-of-

plane test setups with complex geometry and distortion-induced fatigue cracking.  
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1.2 Digital Image Correlation Methodology 

1.2.1 Computer Vision 

Computer vision refers to the branch of technology that utilizes computer algorithms and 

optics to collect information from pictures and videos. Researchers in engineering and material 

sciences have evaluated computer vision for different applications, particularly to characterize 

mechanical parameters. The ability of computer vision to detect cracks has been evaluated by many 

researchers using a variety of materials. Edge detection methodologies have been proven to be 

able to successfully identify edge-like features on digital images, allowing for detection and 

localization of cracks in concrete surfaces (Abdel-Qader et al. 2003). Due to inadvertent detection 

of corrosion, surface textures, component boundaries, and defects, edge detection in metallic 

materials continues to have a high rate of false positives (Yeum and Dyke 2015).  

Research has been conducted to develop algorithms that could remove thick, short, or 

exceedingly linear edges that are typically not created by cracking, with the goal of creating a 

reliable crack detection methodology (Yu et al. 2007). Complex algorithms for detecting cracking 

in asphalt and concrete pavements have been developed by other researchers (Yamaguchi and 

Hashimoto 2010; Zou et al. 2012; Cha et al. 2017). Typically, asphalt and concrete pavements 

have larger crack openings than metallic materials, as well as higher contrast between cracked and 

uncracked regions, meaning that the application of edge detection methodologies to steel bridges 

is challenging. Additionally, most computer vision studies focus on macro-indicators of damage, 

such as extensive corrosion, concrete deck deterioration, and large displacements caused by 

substructure movement. A computer vision strategy to detect fatigue cracks through the tracking 

of structural surface motion in a video has been developed, but crack tip identification remains a 

challenge (Kong and Li 2018). 
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1.2.2 Digital Image Correlation Background 

DIC is a subset of computer vision that utilizes medium- to high-resolution cameras and 

post-processing computer software to analyze images and outputs full-field surface displacement. 

A three-dimensional strain field can be developed from the full-field surface displacement. DIC 

software is capable of analyzing both two- and three-dimensional data, depending on how many 

cameras are utilized during testing. DIC compares a series of images that are collected during 

loading and generates relative strain and displacement for each point on the image. DIC has been 

proven to have potential for detecting and characterizing fatigue cracks, but the majority of testing 

has been limited to simplified test setups, such as in-plane loading or simple geometry.  

DIC has been used in the place of tradition sensing methods, such as strain gauges and 

extensometers, to determine both strain and deformation (Yuan et al. 2014). Crack detection using 

DIC has been applied to a concrete structure (Küntz et al. 2006) and in the calculation of stress 

intensity factors (Zhang and He 2012; Hamam et al. 2007). The applications and limitations of 3D 

DIC have been evaluated using simplified test setups since the mid-1990s (Helm 1996). Test setups 

with four cameras have been used to determine out-of-plane displacements, but additional cameras 

result in challenges with the experimental setup and calibration (Chen et al. 2013). A stereoscopic 

camera setup with a high shutter speed has been used to measure full-field out-of-plane vibrations, 

but the use of high-speed cameras resulted in a lack of image resolution (Helfrick et al. 2011). 

Some complex loading scenarios have been tested using clevis fixtures to generate a mixed mode 

loading on compact (C(T)) test specimens. For Mode I (opening) and Mode II (in-plane shear) 

loading, DIC displacement results agreed with results developed using finite element analysis of 

the crack (Sutton et al. 2007).  
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DIC has been used to evaluate in-plane displacements for a variety of civil infrastructure. 

A primary application of DIC is to measure deflections of critical bridge members when subjected 

to service loading. Bridge deflection has been measured from digital videos through a combination 

of DIC and an inverse compositional algorithm (Pan et al. 2016). This methodology was validated 

by testing on an in-service railway bridge. An advanced DIC system was used to investigate the 

deflections of two historic masonry arch bridges under service loads (Dhanasekar et al. 2018). 

Similar work was performed by Cigada et al. (2014) and Alipour et al. (2019). 3D-DIC has also 

been used with an unmanned aerial vehicle to examine surface cracking on a concrete bridge 

(Reagan et al. 2018). While there have been successful applications of DIC for evaluating 

deflections of in-service structures, challenges to field deployment have been identified, 

particularly lighting conditions (Ribeiro et al. 2014) and limitations on how large of a distance 

there is between the camera and the material surface (Lee and Shinozuka 2006).  

Extensive research has been performed on applications of DIC for identifying fatigue 

cracks in metallic materials, but the research has primarily been conducted in an idealized 

laboratory setting. Studies have examined in-plane fatigue cracking with the goal of identifying 

and characterizing cracks. In-plane loading studies have been performed on steel C(T) specimens 

(Rupil et al. 2011), aluminum channels (Vanlanduit et al. 2008), notched tension specimens (Carrol 

et al. 2009; Carrol et al. 2012), and tension plates with center drilled bolt holes (Lorenzino et al. 

2014; Hutt and Cawley 2009). These studies have contributed to understanding the limitations and 

abilities of DIC for crack detection. Most of these studies, however, focus on qualitative crack 

identification and characterization, and the development of a quantifiable methodology for 

automated steel bridge inspections has only been minimally investigated. Additionally, out-of-

plane loading conditions have not been as thoroughly researched as in-plane fatigue loading. This 
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is likely due to the complexity of the test setup required for out-of-plane fatigue loading (Sutton et 

al. 2007). Work was performed to begin to evaluate how DIC works for complex, out-of-plane test 

setups, and initial testing found that the developed methodology had the ability to detect and 

predict the length of distortion-induced fatigue cracks (Dellenbaugh et al. 2020). 

1.2.3 Digital Image Correlation Setup 

In theory, accurate DIC results are dependent on the specimen preparation, camera setup, 

calibration, and image collection. The preparation of the specimen primarily refers to the 

application of a speckle pattern. The ideal pattern is made of consistent dot sizes that are high 

contrast and random. The speckle pattern is what provides points of reference for the DIC software. 

Without a speckle pattern, images cannot be compared to evaluate the movement of the specimen. 

The camera setup depends on the test specimen’s complexity and whether two- or three- 

dimensional analysis is desired. For two-dimensional analysis, one camera will suffice, since no 

out-of-plane deformations are expected, which allows for a simplified test setup and easier 

calibration. When testing for out-of-plane displacements, two or more cameras are needed to 

capture the three-dimensional strain field. Calibration is the process of converting the images from 

pixels to real dimensions, ensuring realistic evaluation of the specimen. Additionally, calibration 

accounts for the location of the cameras relative to one another in test setups with two or more 

cameras. After calibrating, images are collected at a constant interval while the test specimen is 

being loaded. These images are analyzed using DIC software to determine full-field displacements 

and stresses.  



7 

 

Chapter 2 Previous Work Overview 

2.1 Initial In-Plane Testing 

2.1.1 Initial Testing and Methodology Development 

To develop an automated fatigue crack inspection methodology, a method for quantifying 

cracking was needed. The initial methodology was developed using a DIC test setup with a single 

camera and a C(T) specimen subjected to in-plane loading in a servo-hydraulic testing machine. 

The C(T) specimen tested was 6.35 mm (0.25 in.) thick and 127 mm (5.0 in.) wide. The specimen 

size was chosen such that a single specimen could accommodate extensive crack growth and 

testing at multiple crack lengths. Since bridges are subjected to highly variable loadings, multiple 

load cases were defined for testing on the C(T) specimen. Stress intensity ranges of 11, 22, 33, 44, 

and 55 MPa√m (10, 20, 30, 40, and 50 ksi√in) were chosen to emulate realistic bridge loading, 

and the stress intensity ranges were tested from lowest to highest to limit crack tip plasticity during 

testing. Images for DIC processing were collected for each loading case at crack lengths of 12.7, 

25.4, 38.1, and 50.8 mm (0.5, 1.0, 1.5, and 2.0 in.). The general location of the crack was 

identifiable through visual inspection of the DIC results, but a methodology to determine the crack 

length from the DIC data was developed to move towards automation. The twenty data sets for in-

plane testing were used to develop a crack length quantification methodology.  

2.1.2 Crack Characterization Methodology  

Original testing was performed on a C(T) specimen to ensure that the crack location was 

easily identified. Using the known crack path, the coordinates of the crack path were extended 

beyond the crack tip, assuming that crack growth would continue linearly. After identifying the 

crack path, inspection lines were plotted orthogonal to the crack path at consistent intervals along 

the crack path and projected crack path. From each orthogonal inspection line, two hundred data 
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points were extracted to determine the relative displacement between the two sides of the crack. 

The difference between the displacement on either side of the crack was defined as the relative 

displacement. Relative displacements were plotted along the length of the crack path, and the best 

fit line for each side of the crack was determined using an algorithm. The relative displacement 

for each point along the crack path, Δi, was divided by the maximum relative displacement for the 

data set, Δmax. Convergence of the crack was defined as the difference between 100% and the ratio 

of relative to maximum displacement, shown below as 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 100% −  
∆𝑖𝑖

∆𝑚𝑚𝑚𝑚𝑚𝑚
. (2.1) 

Theoretically, convergence should equal 100% at the crack tip as there is no relative 

displacement on either side of the crack, while at the crack opening where relative displacement is 

the greatest, compliance should equal 0%. However, initial results indicated that this was rarely 

true, likely due to non-ideal testing conditions, such as speckle pattern and image resolution. Initial 

testing showed that the crack tip was located at a convergence between 90% and 95%. This was 

then tested in an out-of-plane test setup to determine the accuracy and efficacy of the developed 

methodology.  

2.2 Distortion-Induced Fatigue Testing 

This section discusses the work performed to verify the applicability of the developed 

methodology to an out-of-plane fatigue crack using a half-scale girder-to-cross-frame subassembly. 

The initial testing, contained in Section 2.2.1, evaluated a crack along the stiffener-to-web 

comprised of two vertical segments connected by a short diagonal segment. The same half-scale 

girder subassembly was then fatigued extensively, resulting in a complex branched crack with four 

distinct crack paths that were evaluated as described in Sections 2.2.2 and 2.2.3. 
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2.2.1 Initial Distortion-Induced Fatigue Testing 

2.2.1.1 Initial Distortion-Induced Fatigue Test Setup and Loading 

After the crack characterization methodology was developed using a simplified in-plane 

C(T) specimen, the methodology was evaluated on a crack developed on a half-scale girder-to-

cross-frame subassembly. The test specimen was an I-shaped plate girder subassembly fabricated 

from A36 steel. The half-scale girder had a length of 2845 mm (112 in.), a depth of 917 mm (36.1 

in.), and a web thickness of 10 mm (0.375 in.). To approximate the axial stiffness provided by the 

concrete deck attached to the top flange of a girder, the top of the girder subassembly was 

connected to the reaction floor of the laboratory, which prevented the top flange from experiencing 

out-of-plane motion. A cross-frame was installed at the mid-span of the girder, which was attached 

through a connection plate welded only to the girder web.  

The girder was loaded out-of-plane by applying a vertical displacement to the far end of 

the cross-frame, producing a distortion-induced fatigue crack. Fatigue cracking was initiated in the 

web-gap region between the connection plate and the flange. A fatigue crack was initiated and 

propagated on the girder through loading for 21,000 cycles at a load range of 2.2 to 25.5 kN (0.5 

to 5.75 kips). This crack spanned between the connection plate weld and the girder web and 

contained two vertical segments connected by a short diagonal segment, all of which were 

idealized as linear. The crack was measured to have a total length of 44.5 mm (1.75 in.).  

A loading protocol was developed for the out-of-plane testing to have varying and realistic 

loads that simulate the varying traffic loads that bridges are subjected to. Realistic loading levels 

were determined using a finite element model of a bridge based on the full-scale proportions of 

the testing setup. Realistic differential vertical deflections between adjacent girders were 

determined by applying the AASHTO fatigue truck. On the full-scale finite element model, the 
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differential deflection was 2.54 mm (0.1 in.), so the target differential deflection for the half-scale 

test setup was 1.25 mm (0.05 in.), which corresponds to an actuator load of 6.6 kN (1.5 kips) 

applied to the end of the cross-frame. Seven load cases were defined for loads above and below 

the target load. All loading cases had a minimum applied load of 0.89 kN (0.2 kip) to simulate the 

dead load of the bridge, and the load cases had a maximum applied load of 2.2, 4.4, 6.7, 8.9, 11.1, 

13.3, and 15.6 kN (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 kips). 

2.2.1.2 Initial Distortion-Induced Fatigue DIC Configuration 

The main difference between the DIC configuration for in-plane C(T) testing and 

distortion-induced fatigue testing is that out-of-plane testing requires the use of a two-camera 

stereo setup, rather than a single camera (see fig. 2.1a and b). A speckle pattern was applied to the 

fatigue susceptible region to provide reference points for the DIC processing (see fig. 2.1c). For 

the purpose of processing the DIC data, the web-to-flange weld was defined as the x-axis, the 

stiffener-to-web weld was established as the y-axis, and the z-axis was located along the direction 

of the cross-frame. 

 

Figure 2.1 (a) Hardware locations for out-of-plane testing, (b) hardware orientation as seen from 
above, and (c) fatigue susceptible region with speckle pattern applied 
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2.2.1.3 Initial Distortion-Induced Fatigue Crack Characterization Methodology 

The same methodology was used to analyze distortion-induced fatigue specimens as the 

in-plane specimens. For the initial analysis of distortion-induced fatigue cracks, the displacement 

values along the z-axis were used to determine convergence. Despite the more complicated 

geometry, the crack path could be determined through visual inspection of the DIC displacement 

contours. Orthogonal lines were drawn along the length of the crack in the web gap region. The 

relative displacements were determined for the entire length of the crack and extended beyond the 

crack tip. Convergence was calculated for the out-of-plane cracking in the same manner as the in-

plane crack using equation 2.1. 

The relative displacements for the load case ranging from 0.89 to 2.2 kN (0.2 to 0.5 kip) 

were very small for the entirety of the crack length, which resulted in large variations in 

convergence. The high variability of the convergence indicates that the developed methodology is 

not applicable at low load levels. This applicability threshold will need to be investigated further 

in future testing. 

Because the C(T) specimen testing resulted in typical convergences of 90% to 95%, the 

known crack length for the distortion-induced fatigue specimen was compared to the 90% and 95% 

convergence values to determine the accuracy of the developed DIC results. The optically 

measured crack length was 44.5 mm (1.75 in.). The 90% convergence values tended to under-

predict the crack length. On average, the 90% convergence value corresponded to a 40.6 mm 

(1.59 in.) crack, which is 9% lower than the actual crack. The 95% convergence tended to over-

predict the crack length, but only by an average of 1%, corresponding to a predicted crack length 

of 45.0 mm (1.77 in.). This indicated that the developed methodology for crack length 

determination was accurate for simple out-of-plane cracks. 
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2.2.2 Complex Branched Distortion-Induced Fatigue Crack Methodology 

An important constraint for applications to DIC is the complexity of crack that is capable 

of being analyzed. Testing was performed using the same test setup as the simple distortion-

induced fatigue crack that was used for initial verification of the developed methodology (see fig. 

2.1). For DIC to be implementable in the field, the methodology must be adequate for detection of 

any distortion-induced fatigue crack found on in-service structures. DIC was evaluated for its 

ability to quantify a complex, branched, distortion-induced fatigue crack. 

2.2.2.1 Complex Branched Crack Pattern 

To develop a complex, branched crack, the girder was loaded cyclically at a load range of 

2.2 to 25.5 kN (0.5 to 5.75 kip) for approximately 1,700,000 cycles (Al-Salih et al. 2021). During 

cyclic loading, two fatigue cracks propagated in the web-gap region; vertically along the 

connection plate-to-web weld and horizontally along the web-to-flange weld. The vertical crack 

along the connection plate-to-web weld also branched into the web in two locations. The overall 

crack pattern is shown in figure 2.2a) with white lines drawn over the fatigue crack locations for 

clarity. For evaluation, the bifurcated cracks were evaluated as three separate cracks. Each of the 

four crack designations, paths, and lengths are summarized in table 2.1.  
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(a) 

 
(b) 

Figure 2.2 (a) Fatigue cracks in web-gap region and (b) schematic of crack path 
with orthogonal data extraction lines 

 

Table 2.1 Crack designations and lengths 

Crack Name Crack Path Crack Length, mm (in.) 
Vertical Crack A-B-C-D-E-G 104.9 (4.14) 

Branched Crack I A-B-C-D-F 111.9 (4.41) 
Branched Crack II A-B-C-D-E-H 138.6 (5.45) 
Horizontal Crack I-J 51.0 (2.00) 

 

2.2.2.2 Complex Branched Crack Data Collection Loading 

A loading protocol had to be developed to achieve realistic loads for out-of-plane testing. 

To this end, a finite element model of a full-scale bridge that matched the half-scale girder 

proportions was developed. The bridge was loaded with the AASHTO fatigue truck and the 

differential vertical deflections between adjacent girders were determined. For the full-scale model, 

the differential deflection was 2.6 mm (0.102 in.), meaning that the target deflection for the half-
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scale model was 1.3 mm (0.051 in.). To achieve the desired deflection, an actuator load of 7.8 kN 

(1.75 kips) was applied (Dellenbaugh et al. 2019). Eleven load cases (LC) for DIC data collection 

were defined with maximum loads above and below the target load, ranging from 2.2 to 24.5 kN 

(0.5 to 5.5 kips). The range in maximum load represented the variable loads that bridges are 

subjected to. For each load case, a minimum load of 0.9 kN (0.2 kip) was applied to simulate the 

dead load acting on the bridge. The load and displacement ranges for each of the eleven load cases 

is shown in table 2.2. 

 

Table 2.2 Out-of-plane load cases 

Load Case Load Range, kN (kips) Displacement Range, mm (in.) 
LC1 0.9 – 2.2 (0.2 – 0.5) 0.025 – 0.046 (0.001 – 0.002) 
LC2 0.9 – 4.4 (0.2 – 1.0) 0.025 – 0.074 (0.001 – 0.003) 
LC3 0.9 – 6.7 (0.2 – 1.5) 0.025 – 0.965 (0.001 – 0.038) 
LC4 0.9 – 8.9 (0.2 – 2.0) 0.025 – 1.651 (0.001 – 0.065) 
LC5 0.9 – 11.1 (0.2 – 2.5) 0.025 – 2.464 (0.001 – 0.097) 
LC6 0.9 – 13.3 (0.2 – 3.0) 0.025 – 3.302 (0.001 – 0.130) 
LC7 0.9 – 15.6 (0.2 – 3.5) 0.025 – 4.141 (0.001 – 0.163) 
LC8 0.9 – 17.8 (0.2 – 4.0) 0.025 – 4.902 (0.001 – 0.193) 
LC9 0.9 – 20.0 (0.2 – 4.5) 0.025 – 5.741 (0.001 – 0.226) 
LC10 0.9 – 22.2 (0.2 – 5.0) 0.025 – 6.553 (0.001 – 0.258) 
LC11 0.9 – 24.5 (0.2 – 5.5) 0.025 – 7.315 (0.001 – 0.288) 

 

2.2.2.3 Crack Characterization Methodology 

The crack characterization methodology used to analyze the complex, multi-segment 

distortion-induced fatigue crack was similar to the developed methodology used on the in-plane 

testing and the simple out-of-plane crack methodology. DIC images were analyzed using 

coordinate transformation. The x-axis was defined as parallel to the web-to-flange weld, the y-axis 

follows the connection plate-to-web weld, and the z-axis is in the direction of the cross-frame, 
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shown in figure 2.2. Displacements in all three directions were analyzed due to the complex 

geometry of the test setup and the crack. Representative DIC results for each of the three 

displacements are shown in figure 2.3. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2.3 Representative DIC results for (a) U-displacement along the x-axis, 
(b) V-displacement along the y-axis, and (c) W-displacement along the z-axis  

 
 

Due to the complexity of the crack, edge detection algorithms were not able to clearly 

detect the path of the crack. The crack paths were visually identified using dye penetrant in the 

loaded condition. The raw displacement data was then analyzed following the developed 

methodology. Orthogonal inspection lines were drawn along the crack length, extending beyond 

the perceived crack tip. Relative displacements between the complex crack boundaries were 

calculated for each segment of the crack from the orthogonal lines. The differential displacements 

were used to determine convergence for each crack segment using equation 2.1. 

2.2.3 Complex Branched Distortion-Induced Fatigue Crack Results 

Figure 2.4 shows the different strains obtained by the DIC software for the complex crack 

pattern. The majority of the crack pattern is clearly visible in the strain images with the exception 
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of the last segment of the vertical crack, segment E-G, which was also difficult to visually detect. 

While the von Mises strain (figure 2.4f) showed the majority of the crack pattern, an important 

note is that this computation does not convey differences between tensile and compression regions 

of the crack. For example, the region surrounding the web-to-flange crack in figure 2.4f) is shown 

in red, but it is representative of compressive stresses, rather than tensile. A finite element study 

found that the web-to-flange weld crack is under compression on the connection plate side and 

under tension on the fascia side (Liu et al. 2015). Similarly, the maximum principal strain is only 

capable of providing a clear picture of the entire crack pattern when combined with the minimum 

principal strain.  

 

 
Figure 2.4 Typical visualized DIC strains: (a) strain in x-axis; (b) strain in y-axis; (c) strain in 

xy-plane; (d) max principal strain; (e) min principal strain; (f) von Mises strain 
 

(a) (b) (c) 

(d) (e) (f) 
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As previously described, differential displacements were computed along data extraction 

lines arranged orthogonal to the crack path, and convergence for those displacements values was 

calculated along the length of the crack path. Due to the complex geometry of the crack and the 

web-gap region, displacements in all three principal directions were examined using DIC. 

Additionally, the resultant differential displacement was calculated and evaluated for the crack 

characterization methodology. The resultant displacement produced very similar trends and 

magnitudes to the W-displacement since the W-displacement magnitude was significantly higher 

than the U- and V-displacement. Therefore, results based on the resultant displacement are not 

discussed in this report.  Additionally, as the primary displacements were in the yz-plane, the U-

displacement was found to have a significantly smaller magnitude than V- and W-displacements, 

creating a highly variable convergence curve for most loading cases. Therefore, the U-

displacement data was not considered to be a useful indicator of crack location for this crack 

pattern. 

The approach applied here was found to perform well under a broad range of applied loads, 

but a threshold to its applicability was identified as occurring at the lowest magnitude load case 

studied (LC1). Relative displacements in all the three directions measured under LC1 were 

extremely small, resulting in highly variable convergence values and indicating that the 

displacement-driven process was ineffective at this low load. Thus, this level of loading was 

identified as the threshold of applicability in the development of this approach. Data from LC1 is 

presented graphically in relative displacement and convergence plots, but is excluded from crack 

characterization methodologies. It should be noted that for most load cases, the relative 

displacements values in all the three directions approached zero well before the known crack tip 

location, resulting in an underprediction of crack length at 90% and 95% convergence values. For 
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this reason, crack lengths at convergence values of 98% were also examined. Since both the 90% 

and 95% convergence data underpredicted crack length, the 90% convergence data was excluded 

from this report. The crack characterization results for each of the four crack segments are 

summarized in the following sections. 

2.2.3.1 Vertical Crack Characterization Results 

The relative W- and V-displacements corresponding to the z- and y-directions for the 

vertical crack are presented visually in figures 2.5(a) and (c), respectively, with convergence 

curves for the same directions shown in figures 2.5(b) and (d). The length of the crack at segments 

B, C, D, E, and G, as determined through traditional visual inspection, are represented by the 

vertical dotted lines in the figures. In the y-direction, both relative displacement and convergence 

display a step-like trend for the diagonal second crack segment, B-C. This is caused by the low 

amount of vertical relative displacement occurring in the vertical segments on either side of B-C, 

compared with the much larger amount of vertical displacement within this segment. 
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Figure 2.5 Vertical Crack: (a) relative W-displacement; (b) convergence of relative W-
displacement; (c) relative V-displacement; (d) convergence of relative V-displacement 

 

The 95% convergence values underpredicted the vertical crack lengths by an average of 

42% based on the W-displacement and 17% based on the V-displacement. The 98% convergence 

resulted in a better prediction of the Vertical Crack length, with an average underprediction of 17% 

based on the W-displacement and 5% based on the V-displacement. For load cases 6 through 11, 

with maximum forces between 13.3 to 24.5 kN (3.0 to 5.5 kip), the 98% convergence crack length 

was accurate to within 1%. 

(a) (b) 

(d) (c) 
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2.2.3.2 Branched Crack I Characterization Results 

The relative displacement and convergence values based on W- and V-displacements for 

Branched Crack I are shown in figure 2.6. The length of actual crack segments B, C, D, and F are 

represented by vertical dotted lines in the figures. Again, the results based on V-direction 

displacement produce a step in the relative displacement and convergence curves for segment B-

C. This flat section is again caused by the large vertical displacements in the diagonal segment 

relative to the two vertical crack segments surrounding it. 

 

 
Figure 2.6 Branched Crack I: (a) relative W-displacement; (b) convergence of relative W-

displacement; (c) relative V-displacement; (d) convergence of relative V-displacement 

 

(a) (b) 

(d) (c) 
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Evaluating crack lengths at 98% convergence resulted in significantly less error based on 

W-displacement, with an average crack length across all eleven load cases of 111.4 mm (4.39 in.), 

an error of less than 1%. Individual load cases all have errors greater than 1% however, with an 

absolute average error of 13%. The 98% convergence results based on V-displacement are similar 

to the 95% convergence results, with load cases 2 through 6 underestimating crack length by 30% 

to 40% while crack length estimates from load cases 7 through 11 are accurate to within 6%. Due 

to the significant underestimation of the low load cases, the average error in the crack length 

estimate based on V-displacement is 19% for 98% convergence. 

2.2.3.3 Branched Crack II Characterization Results 

The relative displacements and convergence values for Branched Crack II are shown in 

figure 2.7. The vertical dotted lines in the figures represent the lengths of the actual crack segments 

B, C, D, E, and H. Again, there is a step-like trend for the vertical segment B-C for the relative V-

displacement and convergence due to the low relative vertical displacements for this segment. 

Although segment E-H is not perfectly vertical, the step-like trend is also seen for this segment for 

the same reason. This was confirmed by experimental observations, which indicated that the crack 

opening in segment E-H was very small and difficult to measure with dye penetrant. 
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Figure 2.7 Branched Crack II: (a) relative W-displacement; (b) convergence of relative W-

displacement; (c) relative V-displacement; (d) convergence of relative V-displacement 

 

Based on W-displacement, both the 95% and 98% convergence results significantly 

underpredicted the crack length regardless of load case. The average error was 56% and 39% for 

the 95% and 98% convergence, respectively. Similarly, the crack length was underestimated based 

on V-displacement for 95% convergence by an average of 37%. For the 98% convergence, the 

average crack length estimate is 123.2 mm (4.85 in.), an underestimation of 11%. The crack 

estimates for load cases 7 through 11 are slightly overestimated by approximately 5%, leading to 

an average absolute error of 17%. 

(a) (b) 

(d) (c) 
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2.2.3.4 Horizontal Web-to-Flange Crack Characterization Results 

The relative displacement and convergence values based on the V-direction for the 

horizontal web-to-flange crack are shown in figure 2.8. The vertical dotted line in the figures 

represents the length of the actual web-to-flange crack of 51 mm (2.0 in.), based on visual 

inspection. The horizontal web-to-flange crack exhibited a high level of noise and did not converge 

well compared to the other cracks on the girder. U-, W-, and R- displacements were all found to 

be very noisy and did not approach the 95% convergence values expected. For the V-direction, 

over half of the displacement data sets did not approach 95% convergence. 

 

 

Figure 2.8 Horizontal web-to-flange crack: (a) relative V-displacement; (b) convergence of 
relative V-displacement 

 

There are multiple explanations for the difficulty in characterizing the horizontal crack. 

First, relative displacements between the crack boundaries were very small. For example, the 

maximum relative W-displacements for the horizontal crack were found to be 0.08 mm (0.003 in.), 

compared to 1.6 mm (0.06 in.) for vertical and branched cracks. This corresponds with 

experimental observation, where the opening of the horizontal web-to-flange crack was extremely 

(a) (b) 
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small and nearly invisible, making it very difficult to detect during visual inspection. Second, as 

discussed previously with regard to the strain visualization results, the horizontal crack is under 

compression on the interior side of the girder, producing crack closure under loading rather than 

opening. This behavior was confirmed with finite element analyses that showed the horizontal 

crack is under compression on the interior side of the girder and under tension on the fascia side. 

For these reasons, the horizontal web-to-flange was not able to be well-characterized using this 

DIC-based methodology, with convergence values never reaching 95% or 98%. The average 

convergence at the crack tip was 70% based on W-displacement and 86% based on V-displacement.  

2.2.3.5 Complex Branched Distortion-Induced Fatigue Crack Summary 

Figure 2.9 shows a visual summary for the predicted crack lengths and the corresponding 

percent error for the Vertical Crack, Branched Crack I, and Branched Crack II. Figure 2.9(a) shows 

the absolute average percent errors between the predicted and actual crack lengths for 95% and 

98% convergence, while Figure 2.9(b) shows the predicted crack lengths based on the 95% and 

98% convergence for relative V- and W-displacements. The dotted lines represent the actual crack 

lengths. 
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Figure 2.9 (a) Absolute average percent error between predicted and actual crack lengths for 
95% and 98% convergence for relative V- and W-displacement; (b) predicted crack lengths 

based on 95% and 98% convergence for relative V- and W-displacement 

 

For the Vertical and Branched cracks, the crack length estimates from 98% convergence 

exhibited reduced error compared to 95% convergence. It can also be seen that the crack length 

estimates based on V-displacement are more accurate than those based on W-displacement. For 

each crack, LC1, 2, and 3 produced very little crack opening, resulting in higher levels of error 
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when calculating convergence. The loading threshold where crack length prediction error 

approaches 10% appears to be between LC4 and LC5 for the Vertical Crack, LC5 and LC6 for 

Branched Crack I, and LC6 and LC7 for Branched Crack II. Lower load ranges did not produce 

crack opening along the full crack length, making it difficult to detect the displacement difference 

occurring at the crack tip, which resulted in crack length underestimation. 

2.3 Advancements Towards Automation 

This section summarizes previous work performed on evaluating the ability of the 

developed crack detection methodology to be automated. A more robust and automated process 

would allow for a diversity of image collection methods and reduce the time required to evaluate 

each potential crack. Section 2.3.1 describes the lighting and focus condition study. The aperture 

testing is described in Section 2.3.2. Open-source DIC alternatives that have the potential to be 

adapted to use in fatigue crack detection are presented in Section 2.3.3. Finally, Section 2.3.4 

contains a study on the effectiveness of a single camera in detecting an out-of-plane crack using 

the distortion-induced fatigue crack test setup. 

2.3.1 Lighting and Focus Testing 

The accuracy of DIC output is dependent on the preparation of the specimen, camera setup, 

calibration, and image collection. Work performed during year one was primarily proof-of-concept 

and was applied under idealized conditions. For DIC to be implementable in the field, the system 

and methodology needs to be robust enough to handle the varying conditions found on in-service 

structures. The objective of this study was to evaluate the ability of the developed DIC 

methodology to characterize an in-plane crack under non-idealized lighting and camera focus 

conditions.  
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2.3.1.1 Lighting and Focus Test Setup, Loading, and Conditions 

Light and focus testing was performed on steel C(T) specimens loaded in a uniaxial servo-

hydraulic loading frame, similar to the testing to develop the in-plane methodology. The fatigue 

crack investigated had the same four crack lengths used in the initial testing, but loading was 

redefined to achieve stress intensity ranges of 11, 16, 22, 27, and 33 MPa√m (10, 15, 20, 25, and 

30 ksi√in). These load cases are respectively designated LC1 through LC5. The five load cases 

were modified from year one testing to limit plasticity at the crack tip and to provide a more 

realistic loading range.  

Three lighting conditions and three focus conditions were defined. High light was the 

brightest light possible from two external LED lamps being set to the maximum brightness, which 

created an overexposed image with a washed-out speckle pattern. Medium light and low light were 

approximately 70% and 30% of the high light condition, respectively. Ideal lighting would occur 

at approximately 85% of the high light condition, meaning that all lighting conditions were non-

ideal, based on a range of lumens for each lighting condition. 

The crack characterization methodology was developed for a camera distance of 216 mm 

(8.5 in.). Two additional camera distance, 432 and 648 mm (17.0 and 25.5 in.), were evaluated in 

this study. At each of the three camera distances, the ideal focus and two additional levels of focus 

resulting in a 5% and 10% reduction from the ideal focus, respectively, were chosen for testing. 

Using the uncertainty estimate from the DIC software, ideal focus was defined as having an 

uncertainty of 0.0003 mm (0.00001 in.) or better under the high lighting condition. Focus was 

initially varied by manually adjusting the rotation of the camera’s focus ring. However, the focus 

ring used does not measure rotation, therefore an alternative definition for quantifying focus had 

to be developed. Focus was redefined in terms of camera distance from the specimen. By first 
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focusing the camera at the ideal distances of 216, 432, and 648 mm (8.5, 17.0, and 25.5 in.), the 

camera was then moved closer to the specimen, reducing the focal length by 5% and 10% to create 

the fair and poor focus conditions, respectively. The uncertainty estimates for the fair and poor 

focus conditions were 0.0007 and 0.0010 mm (0.00003 and 0.00004 in.), respectively.  

Six combinations of lighting and focus conditions were evaluated for each of the three 

camera distances for in-plane crack lengths of 12.7, 25.4, 38.1, and 50.8 mm (0.5, 1.0, 1.5, and 2.0 

in.). Appendix A details all the testing conditions defined for each camera to specimen distance. 

All six of testing condition combinations evaluated were sub-optimal, ignoring the recommended 

calibration needs of the DIC system.  

2.3.1.2 Lighting and Focus Testing Results 

DIC data was collected for varying crack lengths and lighting and focus conditions. Typical 

outputs from the DIC software for LC5 with a crack length of 25.4 mm (1.0 in.) and a camera-to-

specimen distance of 648 mm (25.5 in.) are shown in figures 2.10 and 2.11, showing conditions 1 

and 5, respectively. 
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(a) 

 
(b) 

Figure 2.10 DIC results for a 25.4 mm (1.0 in.) crack with 648 mm (25.5 in.) camera distance 
under LC5 and Condition 1 in terms of (a) displacement and (b) strain 

 

 
(a) 

 
(b) 

Figure 2.11 DIC results for a 25.4 mm (1.0 in.) crack with 648 mm (25.5 in.) camera distance 
under LC5 and Condition 1 in terms of (a) displacement and (b) strain  
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The expected deflections for C(T) specimens are exclusively in-plane, so relative 

displacements perpendicular to the crack path were utilized in accordance with the developed crack 

characterization methodology to calculate the convergence. Due to the distance between the 

camera and the specimen, the crack was frequently not clearly visible in the DIC strain and 

displacement data images. Representative relative displacement and convergence values are shown 

in figures 2.12 and 2.13 for LC5. In each plot, the vertical dotted line represents the actual crack 

length, as verified through specimen compliance and visual observation. Relative displacement 

and convergence plots for additional crack lengths, load cases, and camera distances are shown in 

Appendix A. The high, medium, and low light conditions are denoted using HL, ML, and LL, 

respectively, while the ideal, fair, and poor focus conditions are denoted by IF, FF, and PF, 

respectively. Thus, the first condition combining high light and ideal focus is termed HLIF. 

 

 

Figure 2.12 Relative displacement of a 25.4 mm (1.0 in.) crack under LC5 
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Figure 2.13 Convergence of relative displacement of a 25.4 mm (1.0 in.) crack under LC5 

 

Convergence values for each lighting and focus condition combination were averaged 

across all five load cases for a crack length of 25.4 mm (1.0 in.) and camera distance of 648 mm 

(25.5 in.) and are compared to the ideal case in table 2.3. The convergence for each condition and 

load case is shown visually in figure 2.14. Because of the modified loading cases from the initial 

methodology development, the non-ideal cases can only be directly compared with the ideal results 

for load cases 1, 3, and 5. The lines are presented for clarity. 
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Table 2.3 Average convergence at 25.4 mm (1.0 in.) crack 
tip for 648 mm (25.5 in.) camera distance 

Light and Focus 
Condition 

Average 
Convergence Difference 

Ideal 92.6% N/A 
1 71.5% 21.1% 
2 72.3% 20.3% 
3 69.6% 23.0% 
4 73.3% 19.3% 
5 66.2% 26.4% 
6 73.1% 19.5% 

 

 
Figure 2.14 Average convergence at crack tip for each load case and condition for a crack of 

25.4 mm (1.0 in.) with a camera to specimen spacing of 648 mm (25.5 in.) 

 

Convergence values for non-ideal conditions exhibit significant variability compared to the 

results from the ideal test conditions. While the non-ideal conditions resulted in a significant 

decrease in crack convergence and DIC output quality, the presence of a crack was still detected. 
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This indicates that sub-optimal conditions may not result in accurate crack length measurements, 

but can be used to detect cracks and flag them for further inspection. Similar results were seen for 

all crack lengths and camera to specimen distances. Additional information on lighting and focus 

condition testing can be found in Juno (2020). 

2.3.2 Study on the Impact of Aperture 

Aperture is a measure of how open the lens of a camera is. This is the component that 

controls the physical amount of light allowed into the camera. Aperture is defined based on the “f-

stop” number, where f/1.4 allows a large amount of light into the camera and f/11 or higher lets a 

very small amount of light in. Figure 2.15 shows a comparison between different aperture values 

on a C(T) specimen with a camera to specimen distance of 305 mm (12.0 in.). All photographs 

were taken with the same external lighting conditions, from the same location, and have no post-

processing or editing. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2.15 C(T) specimen photographed with apertures of (a) f/2.8; (b) f/4; and (c) f/11 
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Aperture also has some impact on the depth of the field of the camera. The larger the 

camera opening is, the smaller the depth of field is, and the closer the camera would need to be to 

the specimen. Some cameras have lenses that can automatically adjust aperture, but the cameras 

utilized in this study must be changed manually, making understanding the impact of the aperture 

on DIC results important. 

2.3.2.1 Aperture Test Setup and Loading 

Testing for the impact of aperture was performed on the same C(T) specimen after the 

conclusion of the lighting and focus study, so it was performed on a single crack length of 50.8 

mm (2.0 in.) under LC5. Images were collected for four different camera-to-specimen distances 

and for four different aperture values with idealized light and focus conditions. The four camera-

to-specimen distances were 203, 305, 457, and 610 mm (8.0, 12.0, 18.0, and 24.0 in.). Data was 

collected for apertures of f/1.4, f/2.8, f/4, and f/11, but due to low light and poor quality of the f/4 

and f/11 images, only images taken with apertures of f/1.4 and f/2.8 were analyzed using DIC 

2.3.2.2 Aperture Study Results 

A convergence plot for the 50.8 mm (2.0 in.) crack with a camera distance of 203 mm (8.0 

in.) and an aperture of f/1.4 is shown in figure 2.16. The camera distance and aperture setting 

almost exactly match the initial testing performed on the C(T) specimen, and results in a similar 

convergence seen in previous testing. This convergence plot is representative of the remaining 

seven combinations of camera distance and aperture, which are presented in Appendix A. 

Convergence plots for the other conditions displayed more noise near the middle of the crack, but 

the amount of noise did not seem to vary with aperture setting or camera distance. The aperture of 

f/2.8 resulted in higher convergence values for all camera distances except for 305 mm (12.0 in.) 

as shown in table 2.4. 
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Figure 2.16 Convergence of relative displacement of a 50.8 mm (2.0 in.) crack with a camera 
distance of 203 mm (8.0 in.) and an aperture of f/1.4 under LC5 

 

Table 2.4 Convergence of 50.8 mm (2.0 in.) crack under varying 
camera distances and aperture conditions 

Camera to Specimen 
Distance, mm (in.) 

Aperture Setting 
f/1.4 f/2.8 

203 (8.0) 90.1% 95.0% 
305 (12.0) 84.9% 78.1% 
457 (18.0) 74.7% 87.4% 
610 (24.0) 79.3% 82.9% 

Avg. 82.3% 85.9% 

 

Aperture could potentially serve to correct for non-ideal lighting and focus conditions. 

Additional research will need to be performed to evaluate exactly how much aperture impacts the 

quality of the focus of images. Other than this brief investigation, all testing has been performed 

with an aperture of f/1.4, which is the largest aperture possible on the cameras used for testing. 
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Using a camera with an automatically focusing lens and an adjustable aperture could help to 

simplify the test setup required on a UAV and result in higher quality images. 

2.3.3 Investigation into Open-Source DIC Alternatives 

Open-source software has the potential to allow for more flexible analysis of DIC data. 

Additionally, open-source software could allow for different data collection methods, without the 

need for specialized, idealized test setups. This is important for the development of an accessible 

inspection system. In this study, three viable open-source alternatives were identified and assessed 

using the existing data sets. 

2.3.3.1 Open-Source Software Alternatives 

The International DIC Society (2018) has identified several open-source programs that 

have been developed by the research community and made available to fellow researchers. Of the 

options presented, three emerged as potentially viable alternatives for use in automated bridge 

inspections: Ncorr, Augmented Lagrangian DIC (ALDIC), and DICengine (DICe). There were 

additional options that were feasible for analyzing fatigue cracks on steel bridge members, but 

only these three alternatives were investigated deeper than surface level due to incompatible 

operating systems, lack of knowledge of the software language, or lack of software documentation. 

These three open-source alternatives were used to analyze both in- and out-of-plane cracks using 

images obtained during the development of the crack characterization methodology. The results 

obtained from these open-source software packages are shown in Appendix A. 

Ncorr is a 2D DIC program developed by the Georgia Institute of Technology in Georgia, 

United State (Blaber et al. 2015). Designed to address a lack of user friendly alternatives, Ncorr is 

written entirely in MATLAB and features a high-quality graphical user interface (GUI). It 

introduces a Eulerian to Lagrangian conversion to attempt to analyze areas of discontinuities in 
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displacement fields. When discontinuities are detected, the software creates a region of interest 

around it and then performs DIC on that area. Interpolation and a nonlinear optimization algorithm 

then determine the best fit for the areas with missing data. This has the potential to prove useful in 

images with poor focus or lighting conditions or with gaps in data due to non-ideal speckle pattern 

application. The built in user interface also includes contour plotting tools for visualizing the data 

quickly. 

Developed by the California Institute of Technology in California, United States, ALDIC 

is a 2D DIC code also written in MATLAB (Yang and Bhattacharya 2020). It combines the speed 

and non-iterative analysis of local DIC and the displacement compatibility and smoothness of 

global DIC approaches. ALDIC utilizes subsets locally to determine multiple smaller displacement 

fields and then applies a compatibility requirement for global analysis to ensure that there are no 

gaps or discontinuities in the displacement field without drastically increasing computation time. 

DICe is a 2D and 3D DIC alternative written in C++ developed by the Sandia National 

Laboratories in New Mexico, United States (Turner 2015). It allows the user to choose between 

local and global DIC analysis methods and can also be applied in the tracking of rigid body motion. 

Like Ncorr, it is presented with an intuitive GUI, but does not feature the easy to use contour 

plotting options. Instead, output strain and displacement fields must be visualized using separate 

software or a free open-source data visualization application such as ParaView. 

2.3.4 Distortion-Induced Fatigue Crack Single Camera Testing 

One of the constraints for applying the developed DIC testing methodology on in-service 

highway bridges is the limitations of an Unmanned Aerial Vehicle (UAV). The test setup for the 

developed methodology required two cameras, additional lighting panels, and highly idealized 

testing conditions. Reducing the number of cameras needed to one would allow for a simplified 
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testing setup as well as less weight acting on the UAV. The objective of this research was to 

evaluate the ability of a single camera to detect complex, distortion-induced cracking. 

2.3.4.1 Single Camera Test Setup and Loading 

DIC post-processing was performed using the original images collected during the initial 

out-of-plane distortion-induced fatigue testing. Images were obtained with a stereo camera setup, 

but were processed individually to provide two single-camera data sets with different angles. The 

crack pattern was made up of three linear segments, shown in figure 2.17. The loading cases used 

were the same seven that were used for initial testing, with maximum forces ranging from 2.2 to 

15.6 kN (0.5 to 3.5 kip), shown in table 2.5. All loading cases had a minimum applied load of 0.9 

kN (0.2 kip) to simulate the dead load of the bridge. 

 

 

Figure 2.17 Crack location and geometry 
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Table 2.5 Single camera out-of-plane loading cases 

Load Case Load Range, kN (kip) Displacement Range, mm (in.) 
LC1 0.9 – 2.2 (0.2 – 0.5) 0.025 – 0.046 (0.001 – 0.002) 
LC2 0.9 – 4.4 (0.2 – 1.0) 0.025 – 0.074 (0.001 – 0.003) 
LC3 0.9 – 6.7 (0.2 – 1.5) 0.025 – 0.965 (0.001 – 0.038) 
LC4 0.9 – 8.9 (0.2 – 2.0) 0.025 – 1.651 (0.001 – 0.065) 
LC5 0.9 – 11.1 (0.2 – 2.5) 0.025 – 2.464 (0.001 – 0.097) 
LC6 0.9 – 13.3 (0.2 – 3.0) 0.025 – 3.302 (0.001 – 0.130) 
LC7 0.9 – 15.6 (0.2 – 3.5) 0.025 – 4.141 (0.001 – 0.163) 

 

Post-processing of the images was performed in the VIC-2D software. While the original 

post-processing compared both images to determine an x-, y-, and z-axis relative displacement, the 

single camera testing found x- and y-axis relative displacement, U and V, respectively, for each 

camera angle, shown in figure 2.18. The data from a single camera was then used to find 

convergence of relative displacement along the crack length. This was compared to the original 

convergence values to determine if a single camera can capture the complex crack location. 

 

 
(a) 

 
(b) 

Figure 2.18 Cracked web gap region as seen from (a) camera 1 and (b) camera 2 
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2.3.4.2 Single Camera Results 

The ability of a single camera DIC setup to capture the behavior of a complex, out-of-plane 

crack is highly dependent on the load case and which axis displacement is being evaluated on. 

Load cases 1 and 2 resulted in high amounts of noise in both the 2D and 3D setup, which made 

characterizing the crack challenging. Additionally, the results from the relative displacement in 

the V-direction was highly variable, with convergence frequently jumping and falling along the 

length of the crack. This can be seen visually for LC7 in figure 2.19. Plots for load cases 1 through 

6 are shown in Appendix A. The blue vertical lines represent the transition between different 

segments of the 44.5 mm (1.75 in.) crack and the crack tip. The red line shows the original data 

when processed using VIC-3D software. Crack estimates from the U-displacement are accurate 

for segments B and C of the crack, but do not detect segment A. 

 

 
Figure 2.19 Convergence of relative displacement of a 44.5 mm (1.75 in.) complex crack under 

LC7 
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Another challenge with a single camera is that results are dependent on the camera angle. 

Table 2.6 shows the convergence at the crack tip based on relative U-displacement for both 

cameras and the change in convergence from the 3D analysis. For both 2D and 3D analysis, LC1 

resulted in very noisy convergence plots that reached 100% convergence well before the crack tip, 

indicating a minimum threshold for applicability. As such, results for LC1 are not shown in table 

4.2. For load cases 2 through 7, the average convergence for camera 1 was 90.7%, while the 

average convergence for camera 2 was 90.9%. Compared to the average convergence from 3D 

analysis of 94.1%, cameras 1 and 2 had an average error of 3.39% and 3.22%, respectively. These 

results indicate that the 2D 95% convergence would overestimate the crack length. 

 

Table 2.6 Convergence at 44.5 mm (1.75 in.) crack tip from U-displacement 

Load 
Case 

3D Camera 1 Camera 2 
Convergence Convergence Difference Convergence Difference 

LC2 91.8% 93.9% 2.10% 91.8% 0.00% 
LC3 97.4% 88.5% -8.98% 92.3% -5.13% 
LC4 90.0% 90.4% 0.46% 97.4% 7.47% 
LC5 95.6% 90.6% -5.01% 90.5% -5.12% 
LC6 96.1% 90.2% -5.87% 86.2% -9.83% 
LC7 93.9% 90.8% -3.06% 87.2% -6.68% 
Avg. 94.1% 90.7% -3.39% 90.9% -3.22% 

 

Average convergence for both cameras based on V-displacement was much higher than for 

U-displacement, but this was primarily due to the convergence jumping to 100% early along the 

crack path and remaining there, indicating that convergence in the V-direction was not an effective 

indicator of crack length regardless of the camera angle. Therefore, results for the V-direction are 

not shown in this report. 
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Initial results show that a single camera can detect the behavior of the crack path but is 

highly dependent upon the direction of the analysis, the camera angle, and the load that the crack 

is subjected to. Additional research will be needed to determine exactly how important camera 

angle is when utilizing a single camera, particularly since angle was not measured during this 

testing. While the camera that captured the crack behavior was looking “directly” at the crack, it 

was not quantified and was highly subjective. Single-camera DIC results should be evaluated more 

thoroughly, particularly under varying light and focus conditions, and different UAV alternatives 

should be assessed to determine whether a UAV would be equipped to carry a stereo camera setup.  
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Chapter 3 Cantilever Overhead Sign Structure Fatigue Crack Testing 

3.1 Cantilever Overhead Sign Structure Fatigue Crack Test Setup and Loading 

3.1.1 Cantilever Overhead Sign Structure Background 

Cantilever overhead sign structures (COSS) are commonly employed to convey 

information to highway travelers in the United States. COSS can use between one and four 

horizontal mast-arms and several connection details between the arms and the vertical pole have 

been used over the years. In particular, COSS with two mast-arms using a box connection, similar 

to the one shown in figure 3.1, have been shown to have increased susceptibility to fatigue failures 

in the state of Kansas. This fatigue detail was characterized using DIC to detect crack initiation, 

whereas previous crack detection testing used fatigue cracks that had already propagated to at least 

12.7 mm (0.5 in.). This study determines the lower threshold of crack length for the applicability 

of DIC in fatigue crack detection. 

 

 

Figure 3.1 Schematic of a COSS box connection 
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3.1.2 Cantilever Overhead Sign Structure Fatigue Crack Test Setup 

The COSS box connection detail was categorized using six sub-sized poles with a single 

mast-arm that were modified from a 1981 Kansas Department of Transportation (KDOT) tapered 

design. The pole, arm, and baseplate dimensions for the full-size COSS and the sub-size test 

specimens are given in table 3.1. Note that the baseplate is square, so only the width and thickness 

are shown. Because this design uses a pole that is tapered at 1.17 cm/m (0.14 in/ft), the pole 

diameter varies at the box connection. For the test specimens, a straight pole with a 45.7 cm (18.0 

in.) diameter was chosen for ease of fabrication. 

 

Table 3.1 COSS dimensions 

Geometry Full-Size Structure Test Specimen 

Pole Height, m (ft) 7.92 (26.0) 2.59 (8.50) 

Pole Diameter, cm (in.) Varies 45.7 (18.0) 

Pole Thickness, mm (in.) 7.94 (0.3125) 9.53 (0.375) 

Arm Length, m (ft) 9.45 (31.0) 2.13 (7.00) 

Arm Diameter, cm (in.) 33.0 (13.0) 35.6 (14.0) 

Arm Thickness, mm (in.) 7.94 (0.3125) 11.8 (0.465) 

Baseplate Width, cm (in.) 67.3 (26.5) 76.2 (30.0) 

Baseplate Thickness, mm 
(in.) 63.5 (2.50) 50.8 (2.00) 

 

Test specimens were installed by bolting the baseplate down to a strong floor system using 

Superbolt multi-jackbolt tensioners. A servo-hydraulic actuator was attached to a support girder 

that was then attached to the strong wall system. The actuator was oriented orthogonal to the mast-
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arm and attached to the end of the mast-arm using two plates with semi-circular cuts that were 

bolted together. Figure 3.2 shows schematics of the test setup and figure 3.3 shows a picture of the 

first specimen after installation. 

 

 

Figure 3.2 Schematic of the COSS test setup 
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Figure 3.3 COSS test specimen 

 

3.1.3 Cantilever Overhead Sign Structure Fatigue Crack Loading 

The test specimens were loaded cyclically by retracting the actuator, applying a tensile 

point load at the end of the mast-arm. This resulted in bending of the mast-arm and Mode 1 loading 

on the mast-arm-to-flange and the box-to-pole welds. The COSS also experienced bending and 

torsion in the pole, causing a mixed Mode 1 and 3 condition at the baseplate-to-pole weld. 

To determine the load that should be applied by the actuator for the first specimen, the 

stress at the box connection was considered to be purely in bending, as the differential torsional 

stresses at the weld would be of negligible magnitude. The initial bending stress was chosen to be 

68.9 MPa (10 ksi), matching the AASHTO Category C constant amplitude fatigue threshold for 
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infinite life. The equation for bending stress was rearranged to solve for the required actuator force 

range, F, shown below as 

 

𝐹𝐹 =
𝜎𝜎 ∙ 𝐼𝐼
𝐿𝐿 ∙ 𝐶𝐶

. (3.1) 

 

Here, σ is the bending stress range of 68.9 MPa (10 ksi), I is the moment of inertia of the pole of 

10,280 cm3 (679 in3), L is the distance between the point of load application and the centerline of 

the pole, approximately 213 cm (84.0 in.), and c is the distance to the extreme fiber of the pole, 

equal to the radius of 22.9 cm (9.0 in.). 

This resulted in a force range for the first specimen of 40.0 kN (9.0 kip). For the remaining 

five specimens, the force range was scaled by 1/2, 3/8, or 1/4 to provide fatigue categorization data 

at several stress ranges. Cycles were applied at either 0.5 or 1.0 Hz depending on load range and 

the number of cycles left until fatigue crack initiation was expected. All six specimens were loaded 

with a minimum force equal to one-tenth of the maximum force. Full load reversals were not done 

to avoid instability when applying compression. The actuator minimum and maximum load and 

nominal stress ranges at the box connection are summarized in table 3.2. 
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Table 3.2 COSS load and box connection stress ranges 

Specimen 
Number 

Actuator Load Range 

kN (kip) 

Box Connection Stress Range 

MPa (ksi) 

1 4.45 – 44.5 (1.00 – 10.0) 68.9 (10.0) 

2 2.22 – 22.2 (0.50 – 5.00) 34.5 (5.00) 

3 1.11 – 11.1 (0.25 – 2.50) 17.2 (2.50) 

4 2.22 – 22.2 (0.50 – 5.00) 34.5 (5.00) 

5 1.67 – 16.7 (0.375 – 3.75) 25.9 (3.75) 

6 2.22 – 22.2 (0.50 – 5.00) 34.5 (5.00) 

 

3.2 Cantilever Overhead Sign Structure Fatigue Crack Detection 

3.2.1 DIC System Configuration and Specifications 

In addition to the box connection weld, the mast-arm-to-flange and baseplate welds were 

identified as potential hotspots for fatigue cracks. Prior to testing, a high contrast speckle pattern 

was applied to each region of interest by coating the surface with white paint and then using black 

spray paint and markers to create random patterns. The black speckle sizes ranged from 0.5 to 2.5 

mm (0.02 to 0.10 in.). Two cameras were used to capture 3D images from each location. Figure 

3.4 illustrates typical 3D DIC setup at the box, mast-arm and baseplate connections. 
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(a) 

 
(b) 

 
(c) 

Figure 3.4 3D DIC setup for the (a) box connection, (b) mast-arm, and (c) baseplate 
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Cameras were mounted on horizontal and vertical Unistrut bars to monitor each of the three 

fatigue susceptible connections. For the box and mast-arm welds, the horizontal Unistrut bar was 

mounted to an adjustable tripod. To ensure consistency in each set-up, which involved dismantling 

and reassembling the system between tests, markers were placed on the ground to indicate where 

the legs of the camera and light tripods should be placed. The position of the cameras on the 

vertical Unistrut bars, the angles of the cameras, and the angles of the vertical Unistrut bars were 

also measured to ensure the setups were able to be replicated. 

For the box connection monitoring, the two cameras were spaced 58 cm (23 in.) apart. The 

arm connection crack monitoring setup only used one vertical Unistrut bar with the cameras spaced 

30 cm (12 in.) apart. Monitoring of the baseplate was done by placing the horizontal Unistrut bar 

on the ground with the cameras spaced 30 cm (12 in.) apart. In each case, the distance from the 

cameras to the region of interest was approximately 58 cm (23 in.).  

The cameras used in this investigation were five megapixel (2448 x 2048 pixel) PGR 

Grasshopper3 cameras which used a Sony IMX250 complementary metal oxide semiconductor 

(CMOS) sensor and a frame rate of 50 frames/second. The cameras were equipped with a 17mm 

Schneider Xenoplan lens with aperture of f/1.4 resulting a field of view of 240 x 200 mm (9.45 x 

7.87 in.). External adjustable LED lighting panels were used to reduce shadows caused by 

surrounding laboratory lighting and also provide good contrast for data analysis. The sigma value 

in VIC-3D was used to estimate the noise level during the test. Sigma values ranging from 0.002 

to 0.009 were observed, and these ranges were considered conservative for the desired area of 

interest within the specimen. 

Images used for DIC analysis were collected at regular intervals during the application of 

constant amplitude fatigue. For specimens 1, 2, 4, and 6, this was every 10,000 cycles due to 
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fatigue initiating within 100,000 cycles for each. The other two specimens did not show signs of 

fatigue until more than 500,000 cycles, so DIC images were taken every 100,000 cycles to expedite 

testing. The stiffness of the test setup was monitored by constantly collecting load and 

displacement data from the actuator, and tests were stopped if a noticeable decrease in stiffness 

occurred. 

3.2.2 DIC Post-Processing 

Once the system was set up, the unloaded specimen was used to calibrate the cameras and 

take the reference image. After calibration, the cameras were used to take pictures by running the 

cyclic load at 0.1 Hz for 5 cycles. Images were captured during the cyclic loading using Correlated 

Solutions software VIC-3D. Strain fields were generated using images captured during the peak 

load condition. Prior to post-processing of the images, a subset size of 29x29 pixels and a step size 

of 7 pixels was defined. These values maintained a high-quality spatial resolution as well as 

reasonable processing time. 

3.3 Cantilever Overhead Sign Structure Fatigue Crack Results 

3.3.1 Crack Detection Results 

For each of the six specimens, the box connection was the first of the three regions of 

interest to initiate a fatigue crack. At each data collection interval, the developed strain field was 

compared with the pre-fatigue strain field. When a significant increase in strain was identified, the 

specimen was inspected visually under load to determine if a fatigue crack had initiated. The initial 

and final strain fields for specimens 1-6 are shown in figure 3.5(a-f), respectively. 
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Figure 3.5 Strain fields before and after fatigue crack initiation 
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In each case, fatigue cracks that had yet to grow greater than 6.4 mm (0.25 in.) in length or 

through the thickness of the pole were confirmed by visual inspection. While this study shows that 

it is possible to detect fatigue crack initiation with DIC, these images illustrate that the difference 

in strain before and after fatigue crack initiation can be difficult to detect. Additionally, the 

detection of fatigue crack initiation requires frequent or continuous image collection, manual user 

inspection, and a high likelihood false positives under poor lighting, focus, and surface conditions. 

Nevertheless, this study establishes that fatigue cracks with minimal propagation are able to be 

detected using DIC.  
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Chapter 4 Application of DIC to Fracture-prone Component Evaluation 

4.1 Recognition of Potential for Application to Fracture-prone Component Evaluation 

4.1.1 Potential Applications 

Evaluation of the cantilever overhead sign structure fatigue test revealed the potential for 

DIC to characterize and possibly predict cracking prior to the onset of initiation. Although the 

initial intent of the research was to identify and characterize cracks in the box connection that have 

already initiated and started to propagate, data analysis revealed that the DIC could identify the 

accumulation of strain prior to any visual crack formation. This led the research team to believe 

DIC could be useful in the evaluation of fracture-prone details, especially those that are known to 

fail without prior warning. Specifically, the research performed on this project identifying and 

characterizing fatigue cracks indicated DIC could be an excellent tool for evaluating details prone 

to constraint-induced fracture (CIF). 

4.1.2 Brief Background on Constraint-induced Fracture 

Constraint-induced fracture can be a confusing term to those unfamiliar with the definition 

as used in the highway bridge industry of the United States. Fracture in metallic materials and 

structural components is always a function of material resistance to flaws (fracture toughness), 

geometry, and applied stress. The combination of geometric details and applied stress produces 

the demand, and the level of constraint, or triaxial stress, developing at the point of interest is a 

major factor in fracture behavior, and all fractures require the presence of some level of constraint. 

However, following the fracture of the Hoan Bridge in 2000, the term constraint-induced fracture 

was used to describe fracture occurring from a detail when no prior fatigue cracking had occurred 

(Coletti et al. 2021). The details in question generally include components intersecting in three 

planes, as occurs when girder webs, transverse stiffeners or connection plates, and longitudinal 
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stiffeners or gusset plates intersect on a structure. Although there have been other examples of 

constraint-induced fracture in bridges (Connor et al. 2007; Ellis et al. 2013; Bowman 2002), and 

detailing practices have been modified to avoid some of the geometries used on these structures, 

this is a phenomenon that is still not well understood. Therefore, characterizing behavior at the 

locations of details susceptible to CIF could help in the understanding of this behavior and reduce 

the likelihood of catastrophic failure in the future. 

4.2 Constraint-induced Fracture Testing and Results 

4.2.1 Constraint-induced Fracture Specimen Design 

A large-scale specimen, approximately 4.4 m (14.5 ft) in length, was designed to be able 

to evaluate the details known to increase the likelihood of constraint-induced fracture occurrence. 

The specimen was intended to replicate conditions found on highway bridges where components 

intersect in three planes. The specimen evaluated as part of this study is comprised of a primary 

plate representing a girder web, a continuous longitudinal stiffener running the majority of the 

length of the specimen, and a discontinuous transverse stiffener. Tensile loading is applied to the 

specimen through large-diameter loading pins within a self-reacting frame. The specimen is 

schematically represented in figure 4.1, and can be seen in figure 4.2 with half of the self-reacting 

frame removed from view. 
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Figure 4.1. Schematic representation of discontinuous transverse stiffener CIF specimen 

 

 
Figure 4.2 CIF specimen in place with partial self-reacting load frame 

 

Loaded in tension, the primary plate has a reduced section at the point of interest measuring 

457 mm x 9.5 mm (18 in. x 3/8 in.). Stiffeners in both directions are 8 mm (5/16 in.) thick and 89 
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mm (3.5 in.) tall. The specimen was detailed such that the distance between the longitudinal 

stiffener and the transverse stiffener was 20.6 mm (13/16 in.) with a gap of 12.5 mm (0.5 in.) 

between the longitudinal stiffener weld toe and the transverse stiffener. Details of the stiffener 

geometry is shown in figure 4.2. 

 

 
Figure 4.3 Stiffener details 

 

4.2.2 Results of DIC during Constraint-induced Fracture Testing 

A high-contrast speckle pattern was applied to parts of the web plate and stiffeners to 

facilitate digital image correlation data collection. However, a primary challenge in collecting DIC 

data on the CIF specimen was the temperature at which testing was conducted. Metallic materials 

become less ductile at low temperatures, making them more prone to sudden fracture. A metered 

liquid nitrogen system was developed to cool the specimen to -51 °C (-60 °F), matching the 

AASHTO Zone III minimum service temperature. This caused ice to form on the steel surfaces, 

obstructing the field of view for the DIC cameras. To help with this, isopropyl alcohol was sprayed 

onto the surface, which was then wiped with a squeegee. For safety reasons during testing, the 
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spray bottle and squeegee were attached to extending rods, allowing for ice removal without the 

need to be near the specimen. The high-contrast pattern can be seen on the web plate and stiffeners 

in figure 4.5. 

 

 
Figure 4.4 High-contrast pattern on CIF specimen prior to testing 

 

DIC was collected through a stereo camera setup, with the cameras and lighting positioned 

on a frame suspended above the specimen, allowing for appropriate spacing and angles to capture 

data in the area of interest. The cameras and lighting can be seen above the test specimen in figure 

4.5. 
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Figure 4.5 DIC cameras and lighting suspended above the CIF specimen 

 

The digital image correlation equipment was calibrated prior to testing and specimen 

cooling. The principal strain field of the specimen at the initiation of testing is shown in figure 4.6. 
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Figure 4.6 DIC calibration image of CIFC cameras and lighting suspended above the CIF 

specimen 

 

The specimen was loaded in tension up to a total force of 1926 kN (433 kips), which 

corresponds to a nominal stress of approximately 441 MPa (64 ksi) on the primary web plate, 

neglecting the load-carrying capacity of the longitudinal stiffener. However, the specimen did not 

experience fracture at the location of interest prior to failure by bearing at the loading pins. 

However, DIC data was successfully captured in the region of interest at various points throughout 

loading. Figure 4.7 presents the visual DIC strain results at various levels of load prior to test 

termination. Although the specimen did not fail in fracture, and ice buildup blocked some the 

surface area available for data recording, the DIC was able to capture strain localization around 

the area of high constraint, as shown through with the warmer colors in the strain heat map. This 
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indicates that DIC can possibly be used to quantify behavior in this region, potentially leading to 

the future characterization of constraint-induced fracture behavior. 

 

 

(a) 
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(b) 

 
(c) 

Figure 4.7 DIC principal strain fields at a) 657 kN (148 kips), b) 897 kN (202 kips), and c) 1926 
kN (433 kips) of tensile force  
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Chapter 5 Continued Advancements Towards Automation 

5.1 Digital Image Correlation Using Deep Learning Algorithms 

5.1.1 Deep Learning Background 

The current DIC crack detection methodology relies on conventional correlation 

techniques, which are time-consuming and costly, with systems typically costing over $50,000 and 

requiring extensive user training. The calibration process is also lengthy and varies significantly 

between cases. In this context, advanced technologies like deep learning and computer vision offer 

potential solutions to reduce both cost and time. Over the past decade, scientific fields have been 

transformed by data-driven methodologies, thanks to advances in computing power and storage. 

The availability of large datasets, such as millions of labeled images, has facilitated these 

developments. A key breakthrough has been the success of deep neural networks (Goodfellow et 

al. 2016) in various signal processing tasks, marking a paradigm shift towards data-driven 

approaches in scientific research. 

Neural networks are structured with interconnected neurons arranged in layers within a 

feedforward architecture, as depicted in figure 5.1. Each layer has a specific role in data processing, 

culminating in the output layer's final interpretation. The input layer encodes raw data, such as 

images for classification tasks or image pairs for other applications. The output layer provides the 

final output, such as class probabilities or displacement fields. The hidden layers, situated between 

the input and output layers, perform complex computations. Neurons in these layers function as 

computational units, receiving weighted inputs and applying non-linear activation functions, such 

as the Rectified Linear Unit (ReLU). This non-linearity allows the network to model complex data 

relationships. In regression tasks, the output layer typically presents the predicted value without 

additional activation functions.  
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Figure 5.1 Artificial neural network structure 

 

In computer vision, convolutional neural networks (CNNs) have emerged as a predominant 

subclass of deep neural networks, effectively processing visual data by adhering to essential signal 

processing principles. The convolution process, a fundamental component of CNNs, integrates 

signal filtering with feature extraction, thereby reducing trainable parameters and enhancing 

computational efficiency. Convolutional layers, as opposed to traditional fully connected layers, 

facilitate the interaction between signal patterns and learned filters, making CNNs indispensable 

for tasks like image classification (Krizhevsky et al., 2012), object detection (Ouyang et al., 2016), 

and 3D reconstruction (Chen et al., 2018). Additionally, CNNs have proven superior in optical 

flow estimation, surpassing traditional techniques in accuracy and speed (Hur and Roth, 2020). By 

employing multiple convolutional and deconvolutional layers, along with appropriate pooling and 

activation functions (Ilg et al., 2017), CNNs achieve sub-pixel accuracy in recovering optical flow 

fields, even for large displacements (Sun et al., 2018). 

There are notable similarities between CNNs and DIC algorithms. Both use kernel-based 

methods: subset correlation in DIC resembles the convolution operation in CNNs, and peak 
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searching in DIC is akin to max-pooling in CNNs. However, while DIC uses a highly nonlinear 

correlation criterion, CNNs extract feature maps through linear kernel calculations followed by 

activation functions. By stacking multiple layers, CNNs can model complex nonlinear 

relationships between inputs and outputs, potentially surpassing traditional DIC algorithms. 

Recent advancements in deep learning applications to digital image correlation have 

yielded promising results. Min et al. (2019) introduced a 3D convolutional neural network for 

extracting spatial and temporal features from image sequences in DIC, though it faced challenges 

due to limited training data. Boukhtache et al. (2021) adapted optical flow CNNs for DIC by 

utilizing synthetic speckle images, achieving sub-pixel displacement accuracy through a hybrid 

method combining traditional correlation and post-processing techniques. Yang et al. (2022) 

developed two novel CNNs, DisplacementNet and StrainNet, specifically for DIC. These networks, 

trained exclusively on a synthetic dataset, were designed to separately predict displacement and 

strain fields. This approach addresses the noise and errors commonly associated with strain field 

computations derived from displacement fields and preserves high spatial resolution without post-

filtering. 

The synthetic dataset used by Yang et al. featured a uniform distribution of grayscale 

intensity, represented by a bell-shaped histogram. However, in structural health monitoring, 

speckle patterns often exhibit clusters of bright and dark spots, resulting in a bimodal grayscale 

intensity histogram. This can lead to convergence issues and instability during training, as 

indicated by higher loss values and slower convergence rates. Furthermore, while the displacement 

fields in their study showed smooth transitions with localized Gaussian noise, real-world scenarios 

with structural cracks exhibit abrupt shifts in the displacement field at the crack location. 
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Our study aims to address these challenges with two primary objectives: (1) to generate a 

synthetic dataset of speckle pattern images featuring clusters of dark regions on a white 

background, representing both cracked and uncracked areas; and (2) to develop a CNN capable of 

predicting displacement fields with accuracy comparable to or exceeding current commercial 

hardware and software solutions. 

5.1.2 Synthetic Data Generation Method 

Training of the CNN DIC model used exclusively synthetic datasets to reduce costs and 

enhance data quality control. This section outlines the technique for creating realistic, high-quality 

datasets comprising both reference and deformed images, along with displacement field ground 

truths. Data was generated in two categories: 1) uncracked and 2) cracked datasets. Initially, 256 

x 256 pixel speckle pattern images were generated using a speckle generator tool from Correlated 

Solutions. For the uncracked dataset, random motions and deformations are analytically applied 

to create displacement fields. In contrast, for the cracked dataset, a C(T) specimen with a horizontal 

crack is modeled in Abaqus to obtain displacement fields for cracked specimens. These fields serve 

as ground truths for the CNN, and are then used to distort the original speckle images, producing 

deformed counterparts. Each data sample includes the reference image, its deformed version, and 

the corresponding displacement field, shown in figure 5.2. 
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Figure 5.2 Uncracked dataset generation 

 

For the uncracked dataset's displacement field, the methodology outlined by Yang et al. 

(2021) was utilized. This method combines various deformation elements, including random rigid 

body movements (translation and rotation), stretch/compression, shear, and localized deformations 

modeled using 2D Gaussian functions. The specific range of values for these deformation 

elements, as employed in our study, is detailed in table 5.1. 

 

Table 5.1 Minimum and maximum values of different deformation elements  

Deformation element Minimum value  Maximum value  
Translation  -6 pixels 6 pixels 
Rotation -0.005 rad 0.005 rad 
Scaling 0.98 1.02 
Shear -0.0015 0.0015 
2D Gaussian function Amplitude = -1 

Sigma = 30 (spread of local 
noise) 
Center = 0 (noise center 
location in image) 

Amplitude = 1 
Sigma = 80 (spread of local 
noise) 
Center = 126 (noise center 
location in image) 

 

The deformed image is created by first applying predefined displacements to each pixel, 

resulting in deformed grid coordinates. These coordinates are then interpolated back to a uniform 

Random 
displacement field
(translation, rotation, 
stretch/compression, 
shear, localized 
deformation)

Warp 

Deformed image
256 x 256

Speckle image
256 x 256

Crop center 

One complete set
Reference img.
Deformed img.

Displacement field
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grid using MATLAB's built-in function griddata. Following this, both the reference and deformed 

images are centrally cropped to a size of 128 x 128 pixels.  

The methodology for creating the cracked dataset is described in the following section. In 

this process, a compact specimen (C(T)) was modeled using the Finite Element Analysis (FEA) 

software, Abaqus. Abaqus is renowned for its capability in structural analysis, particularly in 

simulating structural responses under various load conditions, including static, dynamic, and 

thermal stresses. The choice of a C(T) specimen for modeling aligns with our experimental 

objectives to validate our proposed model on similar physical specimens. The user can also model 

different specimen types in Abaqus as required.  

A dataset comprising 60,000 images was created, evenly divided between cracked and 

uncracked regions. This dataset was then partitioned into training and testing sets, with a 90%-10% 

split. Both the training and testing sets maintained an equal ratio of cracked and uncracked images, 

ensuring balanced representation in each set.  

5.1.3 Deep Learning DIC Architecture 

An encoder-decoder based CNN with basic Unet architecture was trained for this project. 

The model architecture is presented in figure 5.3. The network consists of encoder and decoder 

parts. The encoder path, which downsamples the data, consists of a series of convolutional blocks, 

each followed by maxpooling. The purpose of the encoder is to extract features from the input 

image while reducing the spatial dimensions. The typical encoder block consists of a 3x3 

convolution layer, padding of size 1, ReLu activation, followed by a maxpooling layer. The first 

block has a convolution layer with 64 channels; the second encoder block consists of convolution 

layers with 128 channels; the third block has 256 channels; and the fourth layer has 512 channels. 

The last encoder block does not have a maxpooling layer.  
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Figure 5.3 Unet architecture 

 

The decoder path, which upsamples the encoded data, consists of a series of upsample 

blocks followed by concatenation with the corresponding encoder block and a convolutional block. 

The purpose of the decoder is to reconstruct the spatial dimensions and refine the features learned 

by the encoder. The first decoder block with 512 output channels followed by bilinear upsampling 

is mapped to the last encoder block. The second decoder block has 256 output channels; the third, 

128 channels; and the fourth, 64 channels. An output convolution layer with kernel size 1 and 2 

output channels was applied to the last decoder block. 

5.1.4 Deep Learning DIC Training and Results 

The training process was set to run for 500 epochs, and the Adam optimizer was used with 

a learning rate of 0.001. A mean squared error loss (MSE) function was employed for training, as 

it is generally considered suitable for regression tasks.  The training loss function is presented in 

figure 5.4. The zoomed in view of training loss is presented in figure 5.4b. The loss function is 
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very high initially with MSE of 1.58 pixels and rapidly decreases to 0.0058 pixels in 10 epochs 

only. Then the MSE loss reduction is gradual and reduces to 0.000368 pixels at the end of the 

training process suggesting the model is improving and learning from the training data as expected. 

 

 

Figure 5.4 Training loss for the proposed model 

 

Upon completion of the training phase, the model underwent evaluation using the 

designated testing dataset. The performance and accuracy of the model's inferences were 

quantified using several statistical metrics, including Mean Absolute Error (MAE), Mean Squared 

Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²). The outcomes of these 

evaluations are comprehensively detailed and presented in table 5.2, collectively indicate a high 

level of predictive accuracy and reliability. The MAE of 0.0227 reflects the model's precision in 

predicting displacement fields, with the average predictions closely aligning with the actual values. 

This accuracy is further supported by the MSE of 0.00113, indicating minimal variance in the 

model's predictions from the true values, and a low likelihood of large errors. The RMSE at 0.0336 

reinforces this observation, suggesting a consistent accuracy across the model's predictions, 

considering the distribution of errors. Moreover, the high R² value of 0.9985 demonstrates the 

(a) (b)
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model's effectiveness in explaining nearly all the variability of the response data around its mean. 

This ensemble of metrics underlines the model's robustness in accurately predicting the 

displacement fields in the testing dataset with minimal error.   

 

Table 5.2 Model Performance Metrics  

Measure of Accuracy Model Accuracy 
Mean Absolute Error (MAE) 0.0227 
Mean Squared Error (MSE) 0.00113 

Root Mean Squared Error (RMSE) 0.0336 
R-squared (R²) 0.9985 

 

Two sample inferences from the proposed model are presented in figure 5.5. The first 

column shows the ground truths. Adjacent to them are model’s predicted displacement fields 

which aim to replicate the ground truth patterns. The third column in each row highlights the 

difference between the predicted and ground truth fields, with color intensities representing the 

magnitude of the discrepancies in terms of pixels. In the top row, the sample features a cracked 

region, with a sharp discontinuity in the vertical displacement field. Here, model’s predictions 

closely align with the ground truths, evidenced by the near-zero values across the error map. This 

indicates a high level of accuracy in the network's inference, even in the presence of a structural 

anomaly such as a crack. The bottom row presents a sample from an uncracked region, 

characterized by a broader range of displacement values and a more complex field with nonlinear 

gradients. Despite these complexities, the proposed model successfully captures the nonlinear 

relationship in the displacement field between the image pairs, as reflected by the precise 

predictions in the corresponding error map. This example underscores the network's proficiency 

in handling varying patterns of displacement without the presence of discontinuities. 
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Figure 5.5 Two sample predictions from the test dataset 
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Chapter 6 Conclusions and Future Work 

6.1 Conclusions 

The COSS fatigue testing confirmed that 3D DIC strain fields are capable of detecting 

fatigue cracks at or near the point of initiation with lengths less than 6.4 mm (0.25 in.). This 

minimum threshold was established under ideal lighting, focus, and surface conditions, and 

therefore may be difficult to achieve in the field. Monitoring for fatigue crack initiation also 

requires frequent evaluation by the user and is unlikely to be feasible for structures in the field. 

Despite these limitations, this study indicates that fatigue cracks will be able to be detected using 

DIC well before they reach critical lengths. 

DIC data was also collected on a laboratory test of a fracture-prone detail. The full-scale 

constraint-induced fracture specimen test did not result in a fracture, but the strain characterization 

in the region of high constraint is indicative that DIC is capable of characterizing behavior in this 

region. Significant additional work is needed to fully characterize CIF behavior, but DIC will be 

helpful in those efforts. 

An innovative deep learning-based DIC approach has been developed for the end-to-end 

quantification of displacement fields, specifically tailored for fatigue crack inspection. In an effort 

to reduce training expenses, a novel methodology was devised for the generation of a realistic and 

exhaustive training dataset that encompasses reference and deformed speckle images, alongside 

the ground truths of the predefined displacement fields. The model's proficiency, as evidenced by 

its performance on this synthetic dataset, underscores the potential of deep learning to decipher 

complex correlations between paired images.  
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6.2 Future Work 

Future work involves experimental validation of the proposed approach to estimate 

displacement field in a C(T) specimen with fatigue crack subjected to uniaxial loading. The process 

of Deep DIC during tensile tests is depicted in figure 6.1. Initially, a series of images of the 

specimen are captured throughout the application of the load. The first image is used to select the 

Region of Interest (ROI) for displacement field analysis. If the images have a higher resolution 

than the CNN model's input size, patches corresponding to the model's input dimensions are 

extracted from the ROI to maintain a high spatial resolution in the displacement field prediction. 

These patches are then fed into the CNN for displacement field estimation. After processing all 

patches, the predicted displacement fields are assembled and mapped onto the specimen's image. 

 

 

Figure 6.1 Overall methodology of experimental validation 

 

The compact specimens were prepared, each painted with a high-contrast speckle pattern, 

and captured laboratory images of these specimens under load. Figure 6.2 illustrates the C(T) 

specimen loaded in a uniaxial frame, along with extracted patches of the speckle pattern on the 

specimen. As evident from the figure, the speckle pattern exhibits irregular shapes, contrasting 

with the regular patterns in our synthetic dataset. To align more closely with the actual images, the 

dataset generation methodology is being revised and new algorithms are being developed. Once 

the synthetic dataset more accurately mirrors the real images, the CorrelateNet model will be 

ROI

C(T) specimen with 
speckle pattern

Estimated displacement
field

Displacement

CorrelateNet
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retrained on the updated dataset. Subsequently, the performance of the model will be evaluated 

using images of the actual C(T) specimen and compared against the output from commercial DIC 

software.  

 

 

Figure 6.2 Laboratory images of speckle pattern patches from C(T) specimen 

 

 

Extracted patches
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Appendix A Previous Work  

Tables A.1 through A.3 show the light and focus testing conditions for camera to specimen 

distances of 648, 432, and 216 mm (25.5, 17.0, and 8.5 in.), respectively. 

 

Table A.1 Light and focus conditions for 648 mm (25.5 in.) distance 

Condition Focus Focal Length, 
mm (in.) Lighting Light Range, 

lumens 
1 Ideal 648 (25.5) High 5850 – 6600 
2 Ideal 648 (25.5) Medium 4450 – 5000 
3 Ideal 648 (25.5) Low 2000 – 2350 
4 Fair 615 (24.2) High 5850 – 6600 
5 Fair 615 (24.2) Medium 4450 – 5000 
6 Poor 583 (22.9) High 5850 – 6600 

 

Table A.2 Light and focus conditions for 432 mm (17.0 in.) distance 

Condition Focus Focal Length, 
mm (in.) Lighting Light Range, 

lumens 
1 Ideal 432 (17.0) High 5850 – 6600 
2 Ideal 432 (17.0) Medium 4450 – 5000 
3 Ideal 432 (17.0) Low 2000 – 2350 
4 Fair 410 (16.2) High 5850 – 6600 
5 Fair 410 (16.2) Medium 4450 – 5000 
6 Poor 389 (15.3) High 5850 – 6600 

 

Table A.3 Light and focus conditions for 216 mm (8.5 in.) distance 

Condition Focus Focal Length, 
mm (in.) Lighting Light Range, 

lumens 
1 Ideal 216 (8.5) High 5850 – 6600 
2 Ideal 216 (8.5) Medium 4450 – 5000 
3 Ideal 216 (8.5) Low 2000 – 2350 
4 Fair 205 (8.1) High 5850 – 6600 
5 Fair 205 (8.1) Medium 4450 – 5000 
6 Poor 195 (7.7) High 5850 – 6600 
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Typical DIC results for each camera to specimen distances are shown in figures A.1 

through A.6. This shows the comparison between more and less ideal conditions. 

 
(a) 

 
(b) 

Figure A.1 DIC results for a 25.4 mm (1.0 in.) crack with 648 mm (25.5 in.) camera distance 
under LC5 and Condition 1 in terms of (a) displacement and (b) strain  

 

 
(a) 

 
(b) 

Figure A.2 DIC results for a 25.4 mm (1.0 in.) crack with 648 mm (25.5 in.) camera distance 
under LC5 and Condition 5 in terms of (a) displacement and (b) strain  
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(a) 

 
(b) 

Figure A.3 DIC results for a 25.4 mm (1.0 in.) crack with 432 mm (17.0 in.) camera distance 
under LC5 and Condition 1 in terms of (a) displacement and (b) strain  

 

 
(a) 

 
(b) 

Figure A.4 DIC results for a 25.4 mm (1.0 in.) crack with 432 mm (17.0 in.) camera distance 
under LC5 and Condition 5 in terms of (a) displacement and (b) strain  
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(a) 

 
(b) 

Figure A.5 DIC results for a 25.4 mm (1.0 in.) crack with 216 mm (8.5 in.) camera distance 
under LC5 and Condition 1 in terms of (a) displacement and (b) strain  

   

 
(a) 

 
(b) 

Figure A.6 DIC results for a 25.4 mm (1.0 in.) crack with 216 mm (8.5 in.) camera distance 
under LC5 and Condition 5 in terms of (a) displacement and (b) strain  
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The relative displacement and convergence for each camera to specimen distance is shown 

in figures A.7 through A.12. These are representative of each load case evaluated. 

 

 

 
Figure A.7 Relative displacement of a 25.4 mm (1.0 in.) crack with a 

camera distance of 648 mm (25.5 in.) under LC5 
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Figure A.8 Convergence of relative displacement of a 25.4 mm (1.0 in.) 
crack with a camera distance of 648 mm (25.5 in.) under LC5  

 

 
Figure A.9 Relative displacement of a 25.4 mm (1.0 in.) crack with a 

camera distance of 432 mm (17.0 in.) under LC5 
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Figure A.10 Convergence of relative displacement of a 25.4 mm (1.0 in.) 
crack with a camera distance of 432 mm (17.0 in.) under LC5 

 

 

 

Figure A.11 Relative displacement of a 25.4 mm (1.0 in.) crack with a 
camera distance of 216 mm (8.5 in.) under LC5 
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Figure A.12 Convergence of relative displacement of a 25.4 mm (1.0 in.) 
crack with a camera distance of 216 mm (8.5 in.) under LC5 
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Table A.4 Average convergence at 25.4 mm (1.0 in.) crack 
tip for 648 mm (25.5 in.) camera distance 

Light and Focus 
Condition 

Average 
Convergence Difference 

Ideal 92.6% N/A 
1 71.5% 21.1% 
2 72.3% 20.3% 
3 69.6% 23.0% 
4 73.3% 19.3% 
5 66.2% 26.4% 
6 73.1% 19.5% 

 

 
Figure A.13 Average convergence at crack tip for each load case and condition for a 25.4 mm 

(1.0 in.) crack with a camera distance of 648 mm (25.5 in.) 
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Table A.5 Average convergence at 25.4 mm (1.0 in.) crack 
tip for 432 mm (17.0 in.) camera distance 

Light and Focus 
Condition 

Average 
Convergence Difference 

Ideal 92.6% N/A 
1 70.7% 21.9% 
2 76.6% 16.0% 
3 69.9% 22.7% 
4 80.5% 12.1% 
5 72.0% 20.6% 
6 72.9% 19.7% 

 

 

Figure A.14 Average convergence at crack tip for each load case and condition for a 25.4 mm 
(1.0 in.) crack with a camera distance of 432 mm (17.0 in.) 
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Table A.6 Average convergence at 25.4 mm (1.0 in.) crack 
tip for 216 mm (8.5 in.) camera distance 

Light and Focus 
Condition 

Average 
Convergence Difference 

Ideal 92.6% N/A 
1 73.0% 19.6% 
2 75.7% 16.9% 
3 75.6% 17.0% 
4 72.6% 20.0% 
5 70.1% 22.5% 
6 72.8% 19.8% 

 

 

Figure A.15 Average convergence at crack tip for each load case and condition for a 25.4 mm 
(1.0 in.) crack with a camera distance of 216 mm (8.5 in.) 
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Figures A.16 through A.23 show the plots of convergence of relative displacement for 

different aperture values and camera to specimen distances. The vertical dotted line represents the 

50.8 mm (2.0 in.) crack length. 

 

 

Figure A.16 Convergence of relative displacement of a 50.8 mm (2.0 in.) crack with a camera 
distance of 203.2 mm (8.0 in.) and an aperture of f/1.4 under LC5 
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Figure A.17 Convergence of relative displacement of a 50.8 mm (2.0 in.) crack with a camera 
distance of 203.2 mm (8.0 in.) and an aperture of f/2.8 under LC5 

 

 

Figure A.18 Convergence of relative displacement of a 50.8 mm (2.0 in.) crack with a camera 
distance of 304.8 mm (12.0 in.) and an aperture of f/1.4 under LC5 
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Figure A.19 Convergence of relative displacement of a 50.8 mm (2.0 in.) crack with a camera 
distance of 304.8 mm (12.0 in.) and an aperture of f/2.8 under LC5 

 

 

Figure A.20 Convergence of relative displacement of a 50.8 mm (2.0 in.) crack with a camera 
distance of 457.2 mm (18.0 in.) and an aperture of f/1.4 under LC5 
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Figure A.21 Convergence of relative displacement of a 50.8 mm (2.0 in.) crack with a camera 
distance of 457.2 mm (18.0 in.) and an aperture of f/2.8 under LC5 

 

 

Figure A.22 Convergence of relative displacement of a 50.8 mm (2.0 in.) crack with a camera 
distance of 609.6 mm (24.0 in.) and an aperture of f/1.4 under LC5 
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Figure A.23 Convergence of relative displacement of a 50.8 mm (2.0 in.) crack with a camera 
distance of 609.6 mm (24.0 in.) and an aperture of f/2.8 under LC5 
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Figure A.24 Ncorr in-plane crack displacement gradient 

 

 

Figure A.25 Ncorr out-of-plane crack displacement gradient 
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Figure A.26 ALDIC in-plane crack displacement gradient 

 

 

Figure A.27 ALDIC out-of-plane crack displacement gradient 
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Figure A.28 DICe in-plane crack displacement gradient 

 

 
Figure A.29 DICe out-of-plane crack displacement gradient 
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The plots of convergence of relative displacement for out-of-plane cracking analyzed with 

a single camera are shown in figures A.30 through A.36. The blue vertical lines represent the 

different segments of the 44.5 mm (1.75 in.) crack. The red line shows the original data when 

processed using VIC-3D. 

 

 
Figure A.30 Convergence of relative displacement of a 44.5 mm (1.75 in.) 

complex crack under LC1  
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Figure A.31 Convergence of relative displacement of a 44.5 mm (1.75 in.) complex crack under 

LC2  

 

 
Figure A.32 Convergence of relative displacement of a 44.5 mm (1.75 in.) complex crack under 

LC3 
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Figure A.33 Convergence of relative displacement of a 44.5 mm (1.75 in.) complex crack under 

LC4  

 

 
Figure A.34 Convergence of relative displacement of a 44.5 mm (1.75 in.) complex crack under 

LC5  
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Figure A.35 Convergence of relative displacement of a 44.5 mm (1.75 in.) complex crack under 

LC6  

 

 
Figure A.36 Convergence of relative displacement of a 44.5 mm (1.75 in.) 

complex crack under LC7 
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